Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26680, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434046

RESUMO

A poly(p-phenylene)-based multiblock polymer is developed with an oligomeric chain extender and cerium (CE-sPP-PPES + Ce3+) to realize better performance and durability in proton exchange membrane fuel cells. The membrane performance is evaluated in single cells at 80 °C and at 100% and 50% relative humidity (RH). The accelerated stability test is conducted 90 °C and 30% RH, during which linear sweep voltammetry and hydrogen permeation detection are monitored periodically. Results demonstrate that the proton conductivity of the pristine hydrocarbon membranes is superior to that of PFSA membranes, and the hydrogen crossover is significantly lower. In addition, a composite membrane containing cerium performs similarly to a pristine membrane, particularly at low RH levels. Adding cerium to CE-sPP-PPES + Ce3+ membranes improves their chemical durability significantly, with an open circuit voltage decay rate of only 89 µV/h for 1000 h. The hydrogen crossover is maintained across accelerated stability tests, as confirmed by hydrogen detection and crossover current density. The short-circuit resistance indicates that membrane thinning is less likely to occur. Collectively, these results demonstrate that a hydrocarbon membrane with cerium is a potential alternative for fuel cell applications.

2.
Langmuir ; 39(51): 18834-18845, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091527

RESUMO

Hydrocarbon (HC)-based block copolymers have been recognized as promising candidates for proton exchange membranes (PEMs) due to their distinct hydrophilic-hydrophobic separation, which results in improved proton transport compared to that of random copolymers. However, most PEMs derived from HC-based ionomers, including block copolymers, encounter challenges related to durability in electrochemical cells due to their low mechanical and chemical properties. One method for reinforcing HC-based ionomers involves incorporating the ionomers into commercially available low surface tension PTFE porous substrates. Nevertheless, the high interfacial energy between the hydrocarbon-based ionomer solution and PTFE remains a challenge in this reinforcement process, which necessitates the application of surface energy treatment to PTFE. Here, multiblock sulfonated poly(arylene ether sulfone) (SPAES) ionomers are being reinforced using untreated PE on the surface, and this is compared to reinforcement using surface-treated porous PTFE. The PE support layer exhibits a lower surface energy barrier compared to the surface-treated PTFE layer for the infiltration of the multiblock SPAES solution. This is characterized by the absence of noticeable voids, high translucency, gas impermeability, and a physical and chemical stability. By utilizing a high surface tension PE support with a comparable value to the multiblock SPAES, effective reinforcement of the multiblock SPAES ionomers is achieved for a PEM, which is potentially applicable to various hydrogen energy-based electrochemical cells.

3.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177255

RESUMO

A new hydrocarbon-based (HC) composite membrane was developed using liquid crystal polymer (LCP)-nonwoven fabrics for application in proton exchange membrane water electrolysis (PEMWE). A copolymer of sulfonated poly(arylene ether sulfone) with a sulfonation degree of 50 mol% (SPAES50) was utilized as an ionomer for the HC membranes and impregnated into the LCP-nonwoven fabrics without any surface treatment of the LCP. The physical interlocking structure between the SPAES50 and LCP-nonwoven fabrics was investigated, validating the outstanding mechanical properties and dimensional stability of the composite membrane in comparison to the pristine membrane. In addition, the through-plane proton conductivity of the composite membrane at 80 °C was only 15% lower than that of the pristine membrane because of the defect-free impregnation state, minimizing the decrease in the proton conductivity caused by the non-proton conductive LCP. During the electrochemical evaluation, the superior cell performance of the composite membrane was evident, with a current density of 5.41 A/cm2 at 1.9 V, compared to 4.65 A/cm2 for the pristine membrane, which can be attributed to the smaller membrane resistance of the composite membrane. From the results of the degradation rates, the prepared composite membrane also showed enhanced cell efficiency and durability during the PEMWE operations.

4.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050364

RESUMO

Glassy hydrocarbon-based membranes are being researched as a replacement for perfluorosulfonic acid (PFSA) membranes in proton exchange membrane water electrolysis (PEMWE). Here, naphthalene containing Poly(arylene Ether Ketone) was introduced into the Poly(p-phenylene)-based multi-block copolymers through Ni(0)-catalyzed coupling reaction to enhance π-π interactions of the naphthalene units. It is discovered that there is an optimum input ratio of the hydrophilic monomer and NBP oligomer for the multi-block copolymers with high ion exchange capacity (IEC) and polymerization yield. With the optimum input ratio, the naphthalene containing copolymer exhibits good hydrogen gas barrier property, chemical stability, and mechanical toughness, even with its high IEC value over 2.4 meq g-1. The membrane shows 3.6 times higher proton selectivity to hydrogen gas than Nafion 212. The PEMWE single cells using the membrane performed better (5.5 A cm-2) than Nafion 212 (4.75 A cm-2) at 1.9 V and 80 °C. These findings suggest that naphthalene containing copolymer membranes are a promising replacement for PFSA membranes in PEMWE.

5.
Polymers (Basel) ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35566819

RESUMO

Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of PAN nanofibers. Nanofibrous membranes were obtained by electrospinning, and the content of ADEP varied from 0 to 20 wt%. From the vertical burning test, it was demonstrated that the flame retardancy of the composite membranes was enhanced when more than 5 wt% of ADEP was added to PAN, potentially increasing the safety level of LIBs. Moreover, the composite membrane showed higher ionic conductivity and electrolyte uptake (0.83 mS/cm and 137%) compared to those of commercial polypropylene (PP) membranes (Celgard 2400: 0.65 mS/cm and 63%), resulting from interconnected pores and the polar chemical composition in the composite membranes. In terms of battery performance, the composite membrane showed highly stable electrochemical and heat-resistant properties, including superior discharge capacity when compared to Celgard 2400, indicating that the PAN/ADEP composite membrane has the potential to be used as a heat-resistant and flame-retardant separator for safe and high-power LIBs.

6.
ACS Omega ; 6(26): 16924-16933, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250351

RESUMO

Achieving high ionic conductivity, wide voltage window, and good mechanical strength in a single material remains a key challenge for polymer-based electrolytes for use in solid-state supercapacitors (SCs). Herein, we report cross-linked composite gel polymer electrolytes (CGPEs) based on multi-cross-linkable H-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) tetrablock copolymer precursors, SiO2 nanoparticles, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, an ionic liquid (IL). Self-standing CGPE membranes with a high IL content were prepared using in situ cross-linking reactions between the silane groups present in the precursor and the SiO2 surface. The incorporation of an optimal amount of SiO2 increased the cross-linking density of the resulting CGPE while reducing polymer-chain ordering and, consequently, increasing both ionic conductivity and mechanical strength. As a result, the CGPE with 0.1 wt % SiO2 exhibited a high ionic conductivity (2.22 × 10-3 S cm-1 at 25 °C), good tensile strength (453 kPa), and high thermal stability up to 330 °C. Finally, an all-solid-state SC assembled with the prepared CGPE showed a high operating voltage (3 V), a large specific capacitance (103.9 F g-1 at 1 A g-1), and excellent durability (94% capacitance retention over 10,000 charge/discharge cycles), which highlights its strong potential as a solid-state electrolyte for SCs.

7.
Langmuir ; 37(12): 3694-3701, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33729784

RESUMO

For a mechanically tough proton exchange membrane, a composite membrane incorporated with a porous polymer substrate is of great interest to suppress the ionomer swelling and to improve the dimensional stability and mechanical strength of the ionomers. For the composite membranes, good impregnation of substrate-incompatible ionomer solution into the substrate pores still remains one of the challenges to be solved. Here, we demonstrated a facile process (surface treatment with solvents compatible with both substrate and the ionomer solution) for the fabrication of the composite membranes using polytetrafluoroethylene (PTFE) as a porous substrate and poly(arylene ether sulfone) (SPAES) as a hydrocarbon-based (HC) ionomer. Appropriate solvents for the surface treatment were sought through the contact angle measurement, and it was found that alcohol solvents effectively tuned the surface property of PTFE pores to facilitate the penetration of the SPAES/N-methyl-2-pyrrolidone (NMP) solution into ∼300 nm pores of the substrate. Using this simple alcohol treatment, the SPAES/NMP contact angle was reduced in half, and we could fabricate the mechanically tough PTFE/HC composite membranes, which were apparently translucent and microscopically almost void-free composite membranes.

8.
Adv Mater ; 32(25): e2000600, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419233

RESUMO

Electroadhesion provides a simple route to rapidly and reversibly control adhesion using applied electric potentials, offering promise for a variety of applications including haptics and robotics. Current electroadhesives, however, suffer from key limitations associated with the use of high operating voltages (>kV) and corresponding failure due to dielectric breakdown. Here, a new type of electroadhesion based on heterojunctions between iono-elastomer of opposite polarity is demonstrated, which can be operated at potentials as low as ≈1 V. The large electric field developed across the molecular-scale ionic double layer (IDL) when the junction is placed under reverse bias allows for strong adhesion at low voltages. In contrast, under forward bias, the electric field across the IDL is destroyed, substantially lowering the adhesion in a reversible fashion. These ionoelastomer electroadhesives are highly efficient with respect to the force capacity per electrostatic capacitive energy and are robust to defects or damage that typically lead to catastrophic failure of conventional dielectric electroadhesives. The findings provide new fundamental insight into low-voltage electroadhesion and broaden its possible applications.

9.
Chem Commun (Camb) ; 55(12): 1833-1836, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672915

RESUMO

We introduce an approach to synthesize polymer-stabilized CsPbBr3 perovskite nanoparticles (NPs) using ammonium bromide-functionalized polymers as both bromide precursors and stabilizing ligands. The polymer-passivated NPs exhibit significant advantages over conventional perovskite NPs owing to their facile dispersion in polymer matrices and enhanced optoelectronic stability.

10.
RSC Adv ; 9(47): 27500-27509, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529237

RESUMO

A poly(ethylene)-reinforced anion exchange membrane based on cross-linked quaternary-aminated polystyrene and quaternary-aminated poly(phenylene oxide) was developed for reverse electrodialysis. Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Herein, to lower the membrane cost, inexpensive polystyrene and poly(phenylene oxide) were used as ionomer backbones. The ionomers were impregnated into a poly(ethylene) matrix supporter and were cross-linked in situ to enhance the mechanical and chemical properties. Pre-treatment of the porous PE matrix membrane with atmospheric plasma increased the compatibility between the ionomer and matrix membrane. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (0.69-1.67 Ω cm2) was lower than that of AMV (2.58 Ω cm2). Moreover, the transport number of PErC(5)QPS-QPPO was comparable to that of AMV, despite the thinness (51 µm) of the former. The RED stack with the PErC(5)QPS-QPPO membrane provided an excellent maximum power density of 1.82 W m-2 at a flow rate of 100 mL min-1, which is 20.7% higher than that (1.50 W m-2) of the RED stack with the AMV membrane.

11.
ACS Appl Mater Interfaces ; 10(23): 19689-19696, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29851455

RESUMO

It is known that uniaxially drawn perfluoronated sulfonic-acid ionomers (PFSAs) show diffusion anisotropy because of the aligned water channels along the deformation direction. We apply the uniaxially stretched membranes to vanadium redox flow batteries (VRFBs) to suppress the permeation of active species, vanadium ions through the transverse directions. The aligned water channels render much lower vanadium permeability, resulting in higher Coulombic efficiency (>98%) and longer self-discharge time (>250 h). Similar to vanadium ions, proton conduction through the membranes also decreases as the stretching ratio increases, but the thinned membranes show the enhanced voltage and energy efficiencies over the range of current density, 50-100 mA/cm2. Hydrophilic channel alignment of PFSAs is also beneficial for long-term cycling of VRFBs in terms of capacity retention and cell performances. This simple pretreatment of membranes offers an effective and facile way to overcome high vanadium permeability of PFSAs for VRFBs.

12.
RSC Adv ; 8(45): 25304-25312, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539795

RESUMO

In order to increase the chemical stability of polybenzimidazole (PBI) membrane against the highly oxidizing environment of a vanadium redox flow battery (VRFB), PBI/Nafion hybrid membrane was developed by spray coating a Nafion ionomer onto one surface of the PBI membrane. The acid-base interaction between the sulfonic acid of the Nafion and the benzimidazole of the PBI created a stable interfacial adhesion between the Nafion layer and the PBI layer. The hybrid membrane showed an area resistance of 0.269 Ω cm2 and a very low vanadium permeability of 1.95 × 10-9 cm2 min-1. The Nafion layer protected the PBI from chemical degradation under accelerated oxidizing conditions of 1 M VO2 +/5 M H2SO4, and this was subsequently examined in spectroscopic analysis. In the VRFB single cell performance test, the cell with the hybrid membrane showed better energy efficiency than the Nafion cell with 92.66% at 40 mA cm-2 and 78.1% at 100 mA cm-2 with no delamination observed between the Nafion layer and the PBI layer after the test was completed.

13.
ACS Appl Mater Interfaces ; 9(18): 15785-15790, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28452457

RESUMO

We demonstrate sequential folding of micropatterned polymer actuators by tuning the upper critical solution temperature (UCST) of poly(N-isopropylacrylamide) (PNIPAM) copolymers in the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl) imide. Incorporation of comonomers having different hydrogen-bonding capacities, acrylic acid and methyl acrylate, is shown to shift the UCST of PNIPAM to higher and lower temperatures, respectively. Relying on the ability to tune the transition temperature through copolymerization along with the wide thermal range afforded by the IL as a solvent, we fabricated a photopatterned self-folding device which shows reversible and sequential bending of three sets of hinges. Such sequential and reversible bending of microactuators offers potential for the design of complex self-folding origami and soft robots.

14.
Langmuir ; 32(19): 4959-68, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27159064

RESUMO

We demonstrate control over the size of ionic liquid (IL) filled polymeric vesicles (polymersomes) by three distinct methods: mechanical extrusion, cosolvent-based processing in an IL, and fractionation of polymersomes in a biphasic system of IL and water. For the representative ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])), the size and dispersity of polymersomes formed from 1,2-polybutadiene-b-poly(ethylene oxide) (PB-PEO) and polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers were shown to be sensitive to assembly conditions. During mechanical extrusion through a polycarbonate membrane, the relatively larger polymersomes were broken up and reorganized into vesicles with mean size comparable to the membrane pore (100 nm radius); the distribution width also decreased significantly after only a few passes. Other routes were studied using the solvent-switch or cosolvent (CS) method, whereby the initial content of the cosolvent and the PEO block length of PS-PEO were systemically changed. The nonvolatility of the ionic liquid directly led to the desired concentration of polymersomes in the ionic liquid using a single step, without the dialysis conventionally used in aqueous systems, and the mean vesicle size depended on the amount of cosolvent employed. Finally, selective phase transfer of PS-PEO polymersomes based on size was used to extract larger polymersomes from the IL to the aqueous phase via interfacial tension controlled phase transfer. The interfacial tension between the PS membrane and the aqueous phase was varied with the concentration of sodium chloride (NaCl) in the aqueous phase; then the larger polymersomes were selectively separated to the aqueous phase due to differences in shielding of the hydrophobic core (PS) coverage by the hydrophilic corona brush (PEO). This novel fractionation is a simple separation process without any special apparatus and can help to prepare monodisperse polymersomes and also separate unwanted morphologies (in this case, worm-like micelles).

15.
J Am Chem Soc ; 138(14): 4714-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27046136

RESUMO

We demonstrate a facile route to asymmetric polymersomes by blending AC and BC block copolymers in oil-in-oil emulsions containing polystyrene (PS) and polybutadiene (PB) in chloroform (CHCl3). Polymersomes were prepared by mixing polystyrene-b-poly(ethylene oxide) (SO) and polybutadiene-b-poly(ethylene oxide) (BO) in the oil-in-oil emulsion, where the droplets and continuous phase are PS- and PB-rich, respectively. The polymersome structure was directly visualized using dye-labeled SO and BO with confocal fluorescence microscopy; SO and BO with a high O block fraction co-assemble to produce asymmetric polymersomes. As the O block is insoluble in both PS and PB, we infer that the detailed structure of the polymersomes is a bilayer in which the S and B blocks face the PS-inner and PB-outer phases, respectively, while the common O blocks form the core membrane. This structure is only observed for sufficiently long O blocks. It is remarkable that although all the polymers are soluble in CHCl3, such elaborate structures are created by straightforward co-assembly. These asymmetric polymersomes should provide robust bilayer membranes around emulsion droplets, leading to stable nanoscopic dispersions of two fluids.

16.
ACS Appl Mater Interfaces ; 8(9): 6200-10, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26927732

RESUMO

Solid-state polymer electrolyte membranes (PEMs) exhibiting high ionic conductivity coupled with mechanical robustness and high thermal stability are vital for the design of next-generation lithium-ion batteries and high-temperature fuel cells. We present the in situ preparation of nanostructured PEMs incorporating a protic ionic liquid (IL) into one of the domains of a microphase-separated block copolymer created via polymerization-induced microphase separation. This facile, one-pot synthetic strategy transforms a homogeneous liquid precursor consisting of a poly(ethylene oxide) (PEO) macro-chain-transfer agent, styrene and divinylbenzene monomers, and protic IL into a robust and transparent monolith. The resulting PEMs exhibit a bicontinuous morphology comprising PEO/protic IL conducting pathways and highly cross-linked polystyrene (PS) domains. The cross-linked PS mechanical scaffold imparts thermal and mechanical stability to the PEMs, with an elastic modulus approaching 10 MPa at 180 °C, without sacrificing the ionic conductivity of the system. Crucially, the long-range continuity of the PEO/protic IL conducting nanochannels results in an outstanding ionic conductivity of 14 mS/cm at 180 °C. We posit that proton conduction in the protic IL occurs via the vehicular mechanism and the PEMs exhibit an average proton transference number of 0.7. This approach is very promising for the development of high-temperature, robust PEMs with excellent proton conductivities.

17.
J Phys Chem B ; 119(48): 15054-62, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26588106

RESUMO

Nanoemulsion-like polymer vesicles (polymersomes) having ionic liquid interiors dispersed in water are attractive for nanoreactor applications. In a previous study, we demonstrated that small molecules could pass through rubbery polybutadiene membranes on a time scale of seconds, which is practical for chemical transformations. It is of interest to determine how sensitive the rate of transport is to temperature, particularly for membranes in the vicinity of the glass transition (Tg). In this work, the molecular exchange rate of 1-butylimidazole through glassy polystyrene (PS) bilayer membranes is investigated via pulsed field gradient nuclear magnetic resonance (PFG-NMR) over the temperature range from 25 to 70 °C. The vesicles were prepared by the cosolvent method in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]), and four different polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock polymers with varying PS molecular weights were examined. The vesicles were transferred from the ionic liquid to water at room temperature to form nanoemulsion solutions of polymer vesicles in water. The exchange rate of 1-butylimidazole added to the aqueous solutions was observed under equilibrium conditions at each temperature. The exchange rate decreased as the membrane thickness increased, and the exchange rate through the glassy membranes was three to four times slower than through the rubbery polybutadiene membranes under the same experimental conditions. These results demonstrate that the permeability through nanosized membranes depends on both the dimension and chemistry of membrane-forming blocks. Furthermore, the exchange rate was investigated as a function of temperature in the vicinity of the Tg of PS-PEO membranes. The exchange rate, however, is not a strong function of the temperature in the vicinity of the membrane Tg, due to a combination of the nanoscopic dimension of the membrane, and some degree of solvent plasticization.

18.
Langmuir ; 31(27): 7488-95, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134549

RESUMO

We have investigated the effect of added polystyrene-b-poly(ethylene oxide) (SO) copolymer on the stability of oil-in-oil (O/O) emulsions containing polystyrene (PS) and poly(ethylene glycol) (PEG) in chloroform (CHCl3) and directly visualized the location of SO in the emulsions by using dye-labeled SO (SO*) with confocal laser scanning microscopy (CLSM). The emulsion formed by PS/PEG/CHCl3 = 14/6/80 (wt %) consisted of a droplet phase of PS in CHCl3 and a continuous phase containing PEG in CHCl3. SO*s with various molecular weights (Mn,SO) and volume fractions of the PS block in SO (fPS) were prepared via living anionic polymerization and subsequent end-esterification. The effect of SO on the droplet size in the emulsions was investigated as a function of both Mn,SO and fPS. Increasing Mn,SO and decreasing fPS were effective at reducing the droplet size down to less than 1 µm, which is 100 times smaller than in the absence of SO. The location of SO*s in the O/O emulsions was further investigated by CLSM. We found that the location of SO*s changed from the droplet interior to the liquid-liquid interface and then to the continuous phase with decreasing fPS. We discuss the possible mechanism in terms of the relation of SO* location to the droplet size.

19.
Angew Chem Int Ed Engl ; 54(10): 3018-22, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25613353

RESUMO

The reversible micellization and sol-gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA-r-NIPAm)-b-PEO-b-P(AzoMA-r-NIPAm)), has a B block composed of an IL-soluble poly(ethylene oxide) (PEO). The A block consists of a random copolymer including thermosensitive N-isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer-to-micelle transition of a dilute ABA triblock copolymer (1 wt%) was observed in an IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6), at an intermediate "bistable" temperature (50 °C). The system underwent a reversible sol-gel transition cycle at the bistable temperature (53 °C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self-assembly of the ABA triblock copolymer (20 wt%) in [C4 mim]PF6.

20.
Langmuir ; 31(1): 594-601, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25555164

RESUMO

We examine the phase transfer of polystyrene-b-poly(ethylene oxide) (PS-PEO) polymersomes from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), into water. The dependence of the phase transfer on the molecular weight and PEO volume fraction (fPEO) of the PS-PEO polymersomes was systematically studied by varying the molecular weight of PS (10,000-27,000 g/mol) as well as by varying the volume fraction of PEO (fPEO) between 0.1 and 0.3. We demonstrate a general boundary for the phase transfer in terms of a reduced tethering density for PEO (σPEO), which is independent of the molecular weight of the hydrophobic PS. The reduced PEO tethering density was controlled by changing the polymersome size (i.e., increased polymersome sizes increase σPEO), confirming that it is the driving force in the transfer of PS-PEO polymersomes at room temperature. The phase transfer dependence on σPEO was also analyzed in terms of the free energy of polymersomes in the biphasic system. The quality of the aqueous phase, which affects the interfacial tension of the PS membrane, influenced the phase transfer. We systematically reduced the interfacial tension by adding a water-selective solvent, THF, which has a similar effect to increasing σPEO. The results indicate that the interfacial tension between the membrane and water plays an important role in the phase transfer with the corona and that the phase transfer can be controlled either by the dimensions of the polymersomes or by the suitability of the solvent for the membrane. The interfacial tension-hindered phase transfer of polymersomes in the biphasic water-[EMIM][TFSI] system will inform the design of temperature-sensitive and reversible nanoreactors and the separation of polydisperse particles according to size by tuning the quality of the solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...